给数控铣DIY刚性攻丝功能

来自工场百科
Ruoxi留言 | 贡献2018年4月12日 (四) 13:05的版本 →‎电气部分

Intro

我们都在金工实习时学过攻丝(Tapping),就是用一个带有螺纹形切削刃的工具在工件上切出螺纹来。做内螺纹的工具叫丝锥,做外螺纹的叫板牙。

用T形扳手和丝锥攻丝

与手工工作相比,数控机床在批量制造零件时具有较高的效率和一致性。数控铣床刚性攻丝(Rigid Tapping)的过程有三步:主轴正转将丝锥旋入预先钻好的孔,到达预定深度后主轴停止,最后反转将丝锥退出工件。

自动攻丝(Rigid Tapping)过程示意

值得注意的是,丝锥在工件内时,包括中间的减速和反转,Z轴的平动和主轴的转动要同步:主轴转一圈,Z轴运动一个螺距,不然丝锥分分钟断给你看。这就需要一个传感器不停地给数控系统报告主轴的转动角度,一般我们会用光电编码器或者磁编码器。正因为多了这么个传感器,数控机床厂就有理由把自动攻丝当作一个高附加值的Feature,能够自动攻丝的数控铣要贵很多。我手上的小破数控铣就没有这个功能,经过一番调研,我决定DIY一个光电编码器。

可能有同学想问,主轴的转速不是预先设定好的吗?按照转速移动Z轴不就行了?嘿嘿,我想说,有个东西叫累计误差(或者积分误差、累积误差,随你怎么叫),而且中间的加减速过程不好解决。

Planning

关于光电编码器

正交光电旋转编码器(Optical Quadrature Rotary Encoder)由三个红外对射光电传感器和一个码盘组成。码盘圆周上有等分的空缺,光电传感器会因为空缺打通了光路而发出信号。

这是完成后的主轴编码器。左上的锯片被当作镜子,用来看到B相传感器的指示灯。Z相传感器比另外两个要靠近中心,所以只有那个较深的缺口能触发它。

我们把三个光电传感器分别叫做A、B和Z。A和B的光路放置在等分空缺经过的圆周上,相位差为90°或-90°(“正交”即为此意)。Z的光路放置在码盘一周唯一的空缺会经过的圆周上,给每一圈旋转确定起始位置。这样,主轴旋转时A、B、Z的输出信号应该长这样儿:

正交信号。/A、/B、/Z分别是A、B、Z取反。

这样,我们不仅可以根据信号脉冲的个数推断主轴的角位移,还可以根据AB相的相位差推测主轴的旋转方向。

调研后我决定使用欧姆龙的EE-SX-677-WR/EE-SX-676-WR传感器,并且把码盘安装在主轴上方,也就是这里:

即将安装主轴编码器的地方

因为这篇文章是事后诸葛亮,图里可以看见大螺母上已经被我做了两个M4的螺纹孔,用于安装码盘。

测量尺寸

从上图可以看出安装编码器的位置比较狭小,要用游标卡尺测出各个需要的尺寸非常困难,所以这里我们使用试错法:画一个模板,用天空工场的激光切割机做出来,与实物比对后调整尺寸:

用天空工场的激光切割机切模板

试了几次后,终于做出了正确的模板。模板装上以后长这样儿:

尺寸正确的模板装上以后应该长这样儿

于是我们的设计有了一个草图做参照。用自顶向下设计方法的语言来讲,这个草图就是设计的骨架(Skeleton)

主轴编码器骨架草图

Making

机械部分

完成后的CAD模型如下:

完成后的CAD模型。因为使用了参数化的设计方法,作出的修改能够立刻传播到整个模型。

天空工场2018年女生节礼物iPhone X里的不锈钢板配重看起来尺寸合适,把它做成了编码器底座。(什么?工场女生节送iPhone X?iPhone包装盒里有配重?)

【图】(这个底座使用即将安装编码器的铣床加工而成。这种自己加工自己零件的过程叫什么来着?自举?(抱歉加工过程没有录下来))

码盘是用3mm厚亚克力板经激光切割而成。

用天空工场的激光切割机做码盘

经过一些比较,最终选用了一圈9个脉冲(9 Pulses per Revolution)的码盘,这样AB相传感器的相位差最接近±90°,并且脉冲频率不至于过高。

机械部分全部安装好是这个样子的:

【图】

电气部分

欧姆龙EE-SX677-WR的原理图如下:

EE-SX677-WR原理图

可以看出把Load替换成几个kΩ的上拉电阻就可以将OUT线接到电脑并口的引脚上了(当然,电源也是要接的)。随手拿洞洞板做了个电路,装进机床的控制柜:

【图】

数控系统

Outcome